B Solutions to Problems

Solution to Problem 1. Recall the boundary condition and recursion from Lesson 10:

$$
\begin{aligned}
& f(t)=0 \\
& f(i)=\min _{j \text { s.t. }(i, j) \in E}\left\{c_{i j}+f(j)\right\} \quad \text { for } i \in N \text { s.t. } i \neq t
\end{aligned}
$$

where (N, E) is a directed graph, the target node is $t \in N$, the length of edge $(i, j) \in E$ is $c_{i j}$, and $f(i)$ is defined to be the length of a shortest path from node i to node t in the directed graph (N, E).

In the graph above, $t=10$. So, starting with the boundary condition, we can find the shortest path lengths from nodes $1, \ldots, 10$ to node 10 as follows:

$$
\begin{aligned}
& f(10)=0 \\
& f(9)=\min \left\{c_{9,10}+f(10)\right\}=\min \{1+0\}=1 \\
& f(8)=\min \left\{c_{8,10}+f(10)\right\}=\min \{1+0\}=1 \\
& f(7)=\min \left\{c_{7,10}+f(10)\right\}=\min \{1+0\}=1 \\
& f(6)=\min \left\{c_{6,8}+f(8), c_{6,9}+f(9)\right\}=\min \{4+1,7+1\}=5 \\
& f(5)=\min \left\{c_{5,7}+f(7), c_{5,8}+f(8), c_{5,9}+f(9)\right\}=\min \{3+1,9+1,8+1\}=4 \\
& f(4)=\min \left\{c_{4,7}+f(7), c_{4,8}+f(8)\right\}=\min \{5+1,2+1\}=3 \\
& f(3)=\min \left\{c_{3,5}+f(5), c_{3,6}+f(6)\right\}=\min \{4+4,7+5\}=8 \\
& f(2)=\min \left\{c_{2,4}+f(4), c_{2,5}+f(5), c_{2,6}+f(6)\right\}=\min \{3+3,9+4,8+5\}=6 \\
& f(1)=\min \left\{c_{1,4}+f(4), c_{1,5}+f(5)\right\}=\min \{5+3,2+4\}=6
\end{aligned}
$$

Tracing through the recursion, we find that a shortest path from node 1 to node 10 is $(1,5),(5,7),(7,10)$.

